

BK BIRLA CENTRE FOR EDUCATION SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL PRE-BOARD-3(2024-25) CHEMISTRY (043)

TIME – 3 hours

MM -70

MARKING SCHEME

Q.No.	Suggestive Answers	Marks
1	d) All of these	1
2	b) EDTA	1
3	b) NaOH/Br ₂	1
4	b) Secondary structure of proteins	1
5	b) There is a negative deviation from Raoult's law	1
	$=pA \circ xA + pB \circ xB$	
	$=(150\times1/3)+(240\times2/3)=210$	
	$\Delta p mix = p exp - p theo = -ve$	
6	a) X	1
7	a) (i) (q), (ii) (s),(iii) (p)	1
8	c) benzylic	1
9	b) Racemisation	1
10	d) 2-Methylpentan-20l	1
11	a) PbSO ₄ at anode is reduced to Pb	1
12	b) 0	1
13	a. Both A and R are true and R is the correct explanation of A	1
14	c. A is true but R is false.	1
15	b. Both A and R are true but R is not the correct explanation of A.	1
16	a. Both A and R are true and R is the correct explanation of A	1
17	a) $r = k[A][B]$, Order = 2 b) Lmol ⁻¹ s ⁻¹	1/2+1/2+1
18	a) Resonance stabilisation is more in carboxylate ion than phenoxide ion due to equivalent	1
	resonating structures as negative charge is shifting on more electronegative O-atom.	
	b) 2-Chlorobutanoic acid because -I effect decreases with distance.	$\frac{1}{2} + \frac{1}{2}$

19	$CH_2 - CH = CH_2$ $HBr / Peroxide CH_2 - CH_2 - Pr$	1
	a) $CH_3 = CH_2 = CH_2 = Br$ Propene (Ani - Markovnikov 1 – Bromopropane	
	addition (Nucleophilic	
	substitution) Aq. KOH / Δ	
	$CH_3 - CH_2 - CH_2 - OH$	
	Propan – I – ol	
	b) $O_{2N} = O_{2N} O_$	1
	(excess) + $3H_2O$	
	V T NO ₂	
	2, 4, 6-trinitrophenol	
	OR	
	AND A MAIL OF THE ATTACK THE ADDRESS THE ADDRESS THE	1/
	$CH_3 - CH_2 - O - H \longrightarrow CH_3 - CH_2 - O - H$	72
	Ĥ Ĥ	
	$CH_3 - CH_2 - O - H - CH_3 - CH_2 - H_2O$	1
	$CH_2 \rightarrow CH_2 \rightarrow CH_2 = CH_2$	1/2
20	a) dsp^2 , diamagnetic b) Optical isometrism $C N = 6$	1 1/2 1/2
	c) Pentaamminesulphatochromium(III)chloride.	1
21	a) $A = C_6H_5CN$, $B = C_6H_5COOH$	1
	b) $A = C_6 H_5 N H_2$, $B = C_6 H_5 N_2 C I$	1
22	a) Nucleoside is pentose sugar + Base while nucleotide is pentose sugar + Base +	1
	b) Maltose	1
	c) Starch uses 1,4 and 1,6 alpha linkages and has a branched structure, whereas cellulose	
	uses 1,4 beta linkages and has a rigid, straight chain structure. (any one)	1
23	a) $Mg+2Ag^+ \rightarrow Mg^{2+} +2Ag$ b) Eacoll-EaCothada-EaAnada	1
	=0.80-(-2.37) = 3.17 volt	
	Cell reaction, $Mg+2Ag^+\rightarrow 2Ag+Mg^{2+}$	
	$-\text{Ecell} = (0.0591/2) \log [Mg^{2+1}/[\Delta g+1]^2]$	
	-1000 + 0.000 + 12000 + 10000 + 10000 + 10000 + 10000 + 1000 + 1000 + 1000 +	1
	$Ecell = 3.17V - 0.0591/2 \log[1.0 \times 10^7]$ Calculating log(1.0×10 ⁷) -7:	1
	Ecell = $3.17V-0.0591/2 \log[1.0 \times 10^7]$ Calculating log(1.0×10^7)=7: Ecell = $3.17V-(0.059/2) \times 7$	1
	Ecell = $3.17V-0.0591/2 \log[1.0 \times 10^7)$ Calculating log(1.0×10^7)=7: Ecell = $3.17V-(0.059/2) \times 7$ Ecell = $3.17V-0.0295 \times 7$	1
	Ecell = $3.17V-0.0591/2 \log[1.0\times10^7)$ Calculating $\log(1.0\times10^7)=7$: Ecell = $3.17V-(0.059/2)\times7$ Ecell = $3.17V-0.0295\times7$ Ecell = $3.17V-0.2065V$ Ecell = $2.0625V/\sim2V$	1
	Ecell = $3.17V-0.0591/2 \log[1.0\times10^7]$ Calculating log(1.0×10^7)=7: Ecell = $3.17V-(0.059/2)\times7$ Ecell = $3.17V-0.0295\times7$ Ecell = $3.17V-0.2065V$ Ecell = $2.9635V\approx3V$	1
24	$\begin{array}{c} \text{Ecell} = (0.059172) \log [1 \text{Mg}^{-1} / (1 \text{Mg}^{-1}) \\ \text{Ecell} = 3.17 \text{V} - (0.0591/2) \log (1.0 \times 10^7) \\ \text{Calculating} \log (1.0 \times 10^7) = 7; \\ \text{Ecell} = 3.17 \text{V} - (0.059/2) \times 7 \\ \text{Ecell} = 3.17 \text{V} - 0.0295 \times 7 \\ \text{Ecell} = 3.17 \text{V} - 0.2065 \text{V} \\ \text{Ecell} = 2.9635 \text{V} \approx 3 \text{V} \end{array}$	1
24	$\begin{array}{c} \text{Eccli} = (0.0591/2) \log [1\text{Mg}^{-1}/(1\text{Mg}^{-1})] \\ \text{Eccll} = 3.17\text{V} - 0.0591/2 \log (1.0 \times 10^7) \\ \text{Calculating } \log (1.0 \times 10^7) = 7: \\ \text{Eccll} = 3.17\text{V} - (0.059/2) \times 7 \\ \text{Eccll} = 3.17\text{V} - 0.0295 \times 7 \\ \text{Eccll} = 3.17\text{V} - 0.2065\text{V} \\ \text{Eccll} = 2.9635\text{V} \approx 3\text{V} \end{array}$ a) $C_6H_5\text{NH}_2 < C_6H_5\text{N}(\text{CH}_3)_2 < \text{CH}_3\text{NH}_2 < (C_2H_5)_2\text{NH} \\ \text{b) Aniline will form coloured dye with Benzene diazonium chloride while} \\ \text{Figure 1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	1
24	$\begin{array}{c} \text{Ecell} = (0.059172) \log [1 \text{Mg}^{-1} \text{Mg}^{+1}] \\ \text{Ecell} = 3.17 \text{V} - (0.0591/2) \log (1.0 \times 10^7) \\ \text{Calculating} \log (1.0 \times 10^7) = 7; \\ \text{Ecell} = 3.17 \text{V} - (0.059/2) \times 7 \\ \text{Ecell} = 3.17 \text{V} - 0.0295 \times 7 \\ \text{Ecell} = 3.17 \text{V} - 0.2065 \text{V} \\ \text{Ecell} = 2.9635 \text{V} \approx 3 \text{V} \end{array}$ a) $C_6 \text{H}_5 \text{NH}_2 < C_6 \text{H}_5 \text{N}(\text{CH}_3)_2 < \text{CH}_3 \text{NH}_2 < (C_2 \text{H}_5)_2 \text{NH} \\ \text{b)}$ Aniline will form coloured dye with Benzene diazonium chloride while Ethylamine does not. (or Bromine water test)	1 1 1 1
24	$ \begin{array}{c} \text{Eccli} = (0.0591/2) \log \left[\text{Mg}^{-1} \text{J}^{-1} \text{Kg}^{+1} \right] \\ \text{Eccll} = 3.17 \text{V} - (0.0591/2) \log (1.0 \times 10^7) \\ \text{Calculating } \log (1.0 \times 10^7) = 7; \\ \text{Eccll} = 3.17 \text{V} - (0.059/2) \times 7 \\ \text{Eccll} = 3.17 \text{V} - 0.295 \times 7 \\ \text{Eccll} = 3.17 \text{V} - 0.2065 \text{V} \\ \text{Eccll} = 2.9635 \text{V} \approx 3 \text{V} \\ \end{array} $ a) $C_6H_5\text{NH}_2 < C_6H_5\text{N}(\text{CH}_3)_2 < \text{CH}_3\text{NH}_2 < (C_2H_5)_2\text{NH} \\ \text{b)} \text{ Aniline will form coloured dye with Benzene diazonium chloride while Ethylamine does not. (or Bromine water test) \\ c) \\ \textbf{R} - \text{CONH}_2 + \textbf{Br}_2 + 4\text{NaOH} \longrightarrow \textbf{R} - \text{NH}_2 + \text{Na}_2\text{CO}_3 + 2\text{NaBr} + 2\text{H}_2\text{O} \\ \end{array} $	1 1 1 1 1

28	a) I I I	1
	$H_3C - CH_3$	
	Br	
	tert butyl bromide	
	Chemical Formula: C H Br	
	b) 2 Chloropontono	1
	c) Because of symmetrical structure	1
29	a) crystal field splitting energy (CESE) is the energy difference between the two levels of	1
2)	d-orbitals in acrystal field	1
	$d^6 \longrightarrow d^{1} d^{1} d^{1}$	1
	(High spin) $\sqrt{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{t_{2g}}$	
	b) Ligands with smaller Δo values are considered "weak field" and absorb lower-energy	
	light, while ligands with larger Δo values are considered "strong field" and absorb higher-	1
	energy light	
	Or	
	$[Ni(CN)_4]^{2^-}$ < $[Ni(NH_3)_6]^{2^+}$ < $[Ni(H_2O)_6]^{2^+}$	
	c) [Ti(H ₂ O) ₆] ⁴⁺	1
30		
	$(a)Fe_{(aq)}^{2+} + 2e^- \rightarrow Fe_{(s)}$	
	Now $Q = it, i = 2amp$	1⁄2
	$\therefore t = Q/i$	
	since 2 F charge is required to deposit 56 g of Fe^{2+} so for 2.8 g we need 9650 C from above equation	
	t = 9650/2 = 48258	1⁄2
	Using Faraday's second law of electrolysis	
	$\frac{W_{1}(\text{Weight of Fe deposited})}{E_{1}(\text{Equivalent weight of Fe})} = \frac{E_{1}(\text{Equivalent weight of Fe})}{E_{1}(\text{Equivalent weight of Fe})}$	17
	W_2 (Weight of Zn deposited) E_2 (Equivalent weight of Zn)	1/2
	$\frac{2.8}{W_2} = \frac{36/2}{65.3/2}$	1/2
	$W_2 = 3.265 \text{ g}$	/2
	$1 \qquad \qquad$	
	b) $Ca_{(aq)} + 2c \longrightarrow Ca_{(s)}$	1⁄2
	1 mole of Ca i.e. 40 g Ca require = 2 mole	
	=2F	1⁄2
	\therefore 20 g Ca requires $\frac{2 \times 20}{40} = 1 F$	
	c) Faraday's second law of electrolysis states that when the same amount of electricity is	1
	passed through different electrolytes, the masses of the substances deposited at the	, r
	electrodes are directly proportional to their chemical equivalent weights.	
	Ur	
	Cu at canode and O_2 at anode are produced by electrolysis of aqueous CuSO ₄ with mert electrodes.	

31
 a)

$$\pi_{urea} = \pi_{glaccose} \frac{W_{urea}}{M_{urea} \times V_s} = \frac{W_{Claccose}}{M_{Glaccose} \times V_s}$$
 4/2

 a)
 $\pi_{urea} = \pi_{glaccose} \frac{gloccose}{gloccose}$
 4/2

 $M_{urea} = \frac{gloccose}{gloccose}$
 4/2

 or
 $\frac{15g}{60g \text{ mol}^{-1}} = \frac{w_{Glaccose}}{180 \text{ gmol}^{-1}}$
 4/2

 $W_{glucose} = \frac{15g \times 180 \text{ gmol}^{-1}}{60 \text{ gmol}^{-1}} = 45 \text{ g}$
 4/2

 b) Osmotic pressure is the external pressure that must be applied to a solution to prevent the inward flow of solvent molecules through the semi-permeable membrane. It is less affected by temperature charges compared to other colligative properties like boiling point elevation or freezing point depression' somotic pressure can be measured at room temperature/ osmotic pressure involves molarity of the solution, which simplifies calculations. (any 2 points)
 4/2

 a)
 $m - \frac{W_u \times 1000}{M_n \times W_n}$
 4/2

 $m = \frac{30000}{M_n \times W_n}$
 4/2

 $m = \frac{30000}{M_n \times W_n}$
 4/2

 $m = \frac{3000}{M_n \times W_n}$
 4/2

 $m = \frac{162}{M_0 \times 0.65} = 0.50$
 4/2

 As the value of i < 1, the solute is associated.
 1

 b) 0.1 molal solutions of potasium choride will have a greater boiling point elevation than glucose solution as it depends on the number of solute particles present in solution. KCl dissociates into 2 lows in solution while glucose does not.
 1

 32
 a) CHCCOH+< CH_5CH_

actinoids have greater tendency towards complex formation.

Or
a)

$$2MnO_2 + 4KOH + O_2 \xrightarrow{heat} 2K_2MnO_4 + 2H_2O$$

potassium
manganate (green mass)
 $3K_2MnO_4 + 4HCI \rightarrow 2KMnO_4 + MnO_2 + 2H_2O + 4KCI$
potassium
permanganate
1
 $k_2KMnO_4 \xrightarrow{heat} K_2MnO_4 + MnO_2 + O_2$
b)Copper (Cu) is the metal in the first transition series (3d-series) that most frequently
exhibits a +1 oxidation state. This is because it easily loses an electron from its 4s orbital
to achieve a stable 3d¹⁰ configuration.
c)Due to strong metallic bonding as they have unpaired d-electrons.